邯鄲雞澤艾珀耐特阻燃板*型號
采用高溫抗壓試驗爐對有軸壓荷載作用的鋼筋混凝土短柱在升溫、降溫及冷卻作用后的軸壓力學(xué)性能進(jìn)行試驗研究,主要研究降溫方式對經(jīng)歷不同溫度等級的有軸壓荷載鋼筋混凝土短柱的高溫變形特性、高溫后軸壓承載力、軸壓剛度和延性等力學(xué)指標(biāo)的影響規(guī)律.結(jié)果表明:不同降溫方式下軸壓荷載使試件產(chǎn)生明顯的殘余壓縮變形,且對高溫后的極限承載力、軸壓剛度和延性有顯著影響;降溫方式顯著影響高溫后鋼筋混凝土軸壓力學(xué)性能,其中澆水降溫的影響為顯著.
FRP采光帶的優(yōu)劣 主要體現(xiàn)在以下幾個參數(shù):
一、采光率:無色應(yīng)在82%以上,有色板根據(jù)顏色不同而有所變化下降,但***低應(yīng)在72%以上。
二、抗紫外線率:99%以上。
三、抗張強(qiáng)度即抗風(fēng)壓強(qiáng)度:要求1.2mm厚應(yīng)達(dá)到每平方米90公斤以上(檀條間距在1.0米--1.2米之間),在此強(qiáng)度下,已具備抗擊足夠大的大風(fēng)和臺風(fēng)。1.5mm抗風(fēng)壓強(qiáng)度可達(dá)102Kg。
四、耐候率:-30℃-130 ℃之間對本產(chǎn)品無任何影響。即不會老化、開裂或軟化。
五、折射率:透光必是折射,散光型,這決定于玻璃纖維的好壞。
六、由于PC和PVC板透光率極低,不耐寒(-5℃)即開始產(chǎn)生凍裂,不抗紫外線,膨脹系數(shù)大,所以FRP采光帶是其產(chǎn)品的***理想替代品。
邯鄲雞澤艾珀耐特阻燃板*型號
采用有限元軟件ANSYS分析了尺寸、電壓電極間距和表面粗糙度對鎳粉水泥基傳感器與其周圍混凝土應(yīng)力/應(yīng)變協(xié)調(diào)性的影響,進(jìn)而對該傳感器的制作參數(shù)進(jìn)行了優(yōu)化,并對優(yōu)化傳感器埋入混凝土后其自身及周圍混凝土的受力狀態(tài)進(jìn)行了分析.結(jié)果表明:鎳粉水泥基傳感器的合適尺寸為20mm×20mm×40mm,電壓電極間距為5mm,并盡量使其表面粗糙;鎳粉水泥基傳感器埋入混凝土中的受力狀態(tài)近似于單軸受力狀態(tài),其與周圍混凝土的應(yīng)力差別較大,應(yīng)變基本協(xié)調(diào),將其應(yīng)用于混凝土結(jié)構(gòu)健康監(jiān)測時需對測試結(jié)果進(jìn)行修正.
產(chǎn)品特性
★ 透光性:透光率可達(dá)80%接近玻璃的透光率
★ 耐候型:產(chǎn)品在制作過程中添加了UV紫外線吸收劑,因此在使用過程中不易老化,并長期保持良好的透光性。同時它還能吸收99%以上的紫外線輻射,將其轉(zhuǎn)化為可見光,有利于人體健康及植物生長。
★ 耐溫性:在-40℃—+130℃的溫度范圍內(nèi)使用不會引起性能顯著變化。
★ 易加工性:根據(jù)現(xiàn)場情況可進(jìn)行冷管、切割、鉆釘、粘等加工
邯鄲雞澤艾珀耐特阻燃板*型號
邯鄲雞澤艾珀耐特阻燃板*型號
邯鄲雞澤艾珀耐特阻燃板*型號
以海洋工程中含裂紋鋼板為研究對象,通過虛擬裂紋閉合法建立有限元仿真模型,模擬塑性鋼板加固前后的承載能力,并分析膠粘劑的剪切強(qiáng)度和延伸率對加固性能的影響。設(shè)計相應(yīng)的加固試驗?zāi)P?對比經(jīng)過交變濕熱、太陽輻射老化、鹽霧等海洋環(huán)境試驗前后的結(jié)構(gòu)加固性能,并選用適合海洋環(huán)境的膠粘劑進(jìn)行加固方案的優(yōu)化。研究表明,改變膠粘劑的性能參數(shù)對加固結(jié)構(gòu)的屈服點(diǎn)影響不大,但對復(fù)合材料加固的極限承載能力影響較大。海洋環(huán)境因素可導(dǎo)致膠粘劑的性能下降,選用適合海洋環(huán)境的優(yōu)異膠粘劑后可提高加固的可靠性和耐久性。
采用手工攪拌、高速研磨攪拌以及高速研磨攪拌加超聲波震蕩這3種方法對納米SiO2進(jìn)行分散處理,研究了不同處理方式下納米SiO2對水泥漿體性能的影響.用掃描電鏡(SEM)觀測了漿體微觀結(jié)構(gòu),并采用紫外-可見分光光度法測定了在不同分散方法下納米SiO2的分散程度.結(jié)果表明,采用后2種方法處理的納米SiO2分散程度更高,可大幅提高水泥砂漿的抗壓、抗折強(qiáng)度,使砂漿水化產(chǎn)物結(jié)構(gòu)均勻,更密實.
本文概述了有機(jī)蒙脫土/橡膠復(fù)合材料的制備方法,重點(diǎn)介紹了機(jī)械混煉法和插層技術(shù)法,并簡單展望了有機(jī)改性蒙脫土增強(qiáng)橡膠材料今后的研究方向。